HIGH SCHOOL LIFE SCIENCES

Students in high school develop understanding of key concepts that help them make sense of life science. The ideas are building upon students' science understanding of disciplinary core ideas, science and engineering practices, and crosscutting concepts from earlier grades. There are five life science topics in high school: 1) Structure and Function, 2) Inheritance and Variation of Traits, 3) Matter and Energy in Organisms and Ecosystems, 4) Interdependent Relationships in Ecosystems, and 5) Natural Selection and Evolution. The performance expectations for high school life science blend core ideas with scientific and engineering practices and crosscutting concepts to support students in developing useable knowledge that can be applied across the science disciplines. While the performance expectations in high school life science couple particular practices with specific disciplinary core ideas, instructional decisions should include use of many practices underlying the performance expectation (NRC, 2012).

The performance expectations in the topic **Structure and Function** help students formulate an answer to the question: "How do the structures of organisms enable life's functions?" High school students are able to investigate explanations for the structure and function of cells as the basic units of life, the hierarchical systems of organisms, and the role of specialized cells for maintenance and growth. Students demonstrate understanding of how systems of cells function together to support the life processes. Students demonstrate their understanding through critical reading, using models, and conducting investigations. The crosscutting concepts of structure and function, matter and energy, and systems and system models in organisms are called out as organizing concepts.

The performance expectations in the topic **Inheritance and Variation of Traits** help students in pursuing an answer to the question: "How are the characteristics from one generation related to the previous generation?" High school students demonstrate understanding of the relationship of DNA and chromosomes in the processes of cellular division that pass traits from one generation to the next. Students can determine why individuals of the same species vary in how they look, function, and behave. Students can develop conceptual models for the role of DNA in the unity of life on Earth and use statistical models to explain the importance of variation within populations for the survival and evolution of species. Ethical issues related to genetic modification of organisms and the nature of science can be described. Students can explain the mechanisms of genetic inheritance and describe the environmental and genetic causes of gene mutation and the alteration of gene expression. Crosscutting concepts of structure and function, patterns, and cause and effect developed in this topic help students to generalize understanding of inheritance of traits to other applications in science.

The performance expectations in the topic **Matter and Energy in Organisms and Ecosystems** help students answer the questions: "How do organisms obtain and use energy they need to live and grow? How do matter and energy move through ecosystems?" High school students can construct explanations for the role of energy in the cycling of matter in organisms and ecosystems. They can apply mathematical concepts to develop evidence to support explanations of the interactions of photosynthesis and cellular respiration and develop models to communicate

these explanations. They can relate the nature of science to how explanations may change in light of new evidence and the implications for our understanding of the tentative nature of science. Students understand organisms' interactions with each other and their physical environment, how organisms obtain resources, change the environment, and how these changes affect both organisms and ecosystems. In addition, students can utilize the crosscutting concepts of matter and energy and Systems and system models to make sense of ecosystem dynamics.

The performance expectations in the topic **Interdependent Relationships in Ecosystems** help students answer the question, "How do organisms interact with the living and non-living environment to obtain matter and energy?" This topic builds on the other topics as high school students demonstrate an ability to investigate the role of biodiversity in ecosystems and the role of animal behavior on survival of individuals and species. Students have increased understanding of interactions among organisms and how those interactions influence the dynamics of ecosystems. Students can generate mathematical comparisons, conduct investigations, use models, and apply scientific reasoning to link evidence to explanations about interactions and changes within ecosystems.

The performance expectations in the topic **Natural Selection and Evolution** help students answer the questions: "How can there be so many similarities among organisms yet so many different plants, animals, and microorganisms? How does biodiversity affect humans?" High school students can investigate patterns to find the relationship between the environment and natural selection. Students demonstrate understanding of the factors causing natural selection and the process of evolution of species over time. They demonstrate understanding of how multiple lines of evidence contribute to the strength of scientific theories of natural selection and evolution. Students can demonstrate an understanding of the processes that change the distribution of traits in a population over time and describe extensive scientific evidence ranging from the fossil record to genetic relationships among species that support the theory of biological evolution. Students can use models, apply statistics, analyze data, and produce scientific communications about evolution. Understanding of the crosscutting concepts of patterns, scale, structure and function, and cause and effect supports the development of a deeper understanding of this topic.

HS. Structure and Function

Students who demonstrate understanding can:

HS-LS1-1.

Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins, which carry out the essential functions of life through systems of specialized cells. [Assessment Boundary: Assessment does not include identification of specific cell or tissue types, whole body systems, specific protein structures and functions, or the biochemistry of protein synthesis.]

HS-LS1-2.

Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms. [Clarification Statement: Emphasis is on functions at the organism system level such as nutrient uptake, water delivery, and organism movement in response to neural stimuli. An example of an interacting system could be an artery depending on the proper function of elastic tissue and smooth muscle to regulate and deliver the proper amount of blood within the circulatory system.] [*Assessment Boundary: Assessment does not include interactions and functions at the molecular or chemical reaction level.*]

HS-LS1-3.

Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis. [Clarification Statement: Examples of investigations could include heart rate response to exercise, stomate response to moisture and temperature, and root development in response to water levels.] [Assessment Boundary: Assessment does not include the cellular processes involved in the feedback mechanism.]

Students who demonstrate understanding can: Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins, which carry out the essential functions of life through systems of specialized cells.

Assessment Boundary: Assessment does not include identification of specific cell or tissue types, whole body systems, specific protein structures and functions, or the biochemistry of protein synthesis.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Constructing Explanations and Designing	LS1.A: Structure and Function	Structure and Function
Solutions	Systems of specialized cells within	• Investigating or designing new systems or
Construct an explanation based on valid	organisms help them perform the	structures requires a detailed
and reliable evidence obtained from a	essential functions of life.	examination of the properties of different
variety of sources (including students'	All cells contain genetic information in	materials, the structures of different
own investigations, models, theories,	the form of DNA molecules. Genes are	components, and connections of
simulations, peer review) and the	regions in the DNA that contain the	components to reveal its function and/or
assumption that theories and laws that	instructions that code for the formation	solve a problem.
describe the natural world operate today	of proteins, which carry out most of the	
as they did in the past and will continue	work of cells.	
to do so in the future.		

Students who demonstrate understanding can: Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms.

Clarification Statement: Emphasis is on functions at the organism system level such as nutrient uptake, water delivery, and organism movement in response to neural stimuli. An example of an interacting system could be an artery depending on the proper function of elastic tissue and smooth muscle to regulate and deliver the proper amount of blood within the circulatory system.

Assessment Boundary: Assessment does not include interactions and functions at the molecular or chemical reaction level.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and Using Models	LS1.A: Structure and Function	Systems and System Models
Develop and use a model based on	 Multicellular organisms have a 	• Models (e.g., physical, mathematical,
evidence to illustrate the relationships	hierarchical structural organization, in	computer models) can be used to
between systems or between	which any one system is made up of	simulate systems and interactions—
components of a system.	numerous parts and is itself a component	including energy, matter, and
	of the next level.	information flows—within and between
		systems at different scales.

Students who demonstrate understanding can: Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis.

Clarification Statement: Emphasis is on functions at the organism system level such as nutrient uptake, water delivery, and organism movement in response to neural stimuli. An example of an interacting system could be an artery depending on the proper function of elastic tissue and smooth muscle to regulate and deliver the proper amount of blood within the circulatory system.

Assessment Boundary: Assessment does not include interactions and functions at the molecular or chemical reaction level.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
 Planning and Carrying Out Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the 	 LS1.A: Structure and Function Feedback mechanisms maintain a living system's internal conditions within certain limits and mediate behaviors, allowing it to remain alive and functional even as external conditions change within some range. Feedback mechanisms can encourage (through positive feedback) or discourage (negative feedback) what is going on 	 Stability and Change Feedback (negative or positive) can stabilize or destabilize a system.
 design accordingly. Connections to Nature of Science Scientific Investigations Use a Variety of Methods Scientific inquiry is characterized by a common set of values that include: logical thinking, precision, open- mindedness, objectivity, skepticism, replicability of results, and honest and ethical reporting of findings. 	inside the living system.	

HS. Matter and Energy in Organisms and Ecosystems

Students who demonstrate understanding can:

HS-LS1-5.

Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy. [Clarification Statement: Emphasis is on illustrating inputs and outputs of matter and the transfer and transformation of energy in photosynthesis by plants and other photosynthesizing organisms. Examples of models could include diagrams, chemical equations, and conceptual models.] [Assessment Boundary: Assessment does not include specific biochemical steps.]

HS-LS1-6.

Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules. [Clarification Statement: Emphasis is on using evidence from models and simulations to support explanations.] [Assessment Boundary: Assessment does not include the details of the specific chemical reactions or identification of macromolecules.]

HS-LS1-7.

Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed, resulting in a net transfer of energy. [Clarification Statement: Emphasis is on the conceptual understanding of the inputs and outputs of the process of cellular respiration.] [Assessment Boundary: Assessment should not include identification of the steps or specific processes involved in cellular respiration.]

HS-LS2-3.

Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions. [Clarification Statement: Emphasis is on conceptual understanding of the role of aerobic and anaerobic respiration in different environments.] [Assessment Boundary: Assessment does not include the specific chemical processes of either aerobic or anaerobic respiration.]

HS-LS2-4.

Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem. [Clarification Statement: Emphasis is on using a mathematical model of stored energy in biomass to describe the transfer of energy from one trophic level to another and that matter and energy are conserved as matter cycles and energy flows through ecosystems. Emphasis is on atoms and molecules such as carbon, oxygen, hydrogen and nitrogen being conserved as they move through an ecosystem.] [Assessment Boundary: Assessment is limited to proportional reasoning to describe the cycling of matter and flow of energy.]

HS-LS2-5.

Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere. [Clarification Statement: Examples of models could include simulations and mathematical models.] [Assessment Boundary: Assessment does not include the specific chemical steps of photosynthesis and respiration.]

Students who demonstrate understanding can: Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy.

Clarification Statement: Emphasis is on illustrating inputs and outputs of matter and the transfer and transformation of energy in photosynthesis by plants and other photosynthesizing organisms. Examples of models could include diagrams, chemical equations, and conceptual models.

Assessment Boundary: Assessment does not include specific biochemical steps.

The state of a survey of the state of the st	alay a la sa alay atan a ha a fa llay da a a la sa a a	to for any the NDC decourse at 4 France	- I fould a Colore - Folger the
The performance expectations above were	developed lising the following elemen	TS TROM THE NIRU document Δ Fram	PWORK TOR K-17 SCIPRCP FAILCATION
The periormance expectations above were	acveroped using the ronowing clemen		

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and Using Models	LS1.C: Organization for Matter and Energy	Energy and Matter
 Use a model based on evidence to 	Flow in Organisms	 Changes of energy and matter in a
illustrate the relationships between	The process of photosynthesis converts	system can be described in terms of
systems or between components of a	light energy to stored chemical energy by	energy and matter flows into, out of, and
system.	converting carbon dioxide plus water into	within that system.
	sugars plus released oxygen.	

Students who demonstrate understanding can: Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules.

Clarification Statement: Emphasis is on using evidence from models and simulations to support explanations.

Assessment Boundary: Assessment does not include the details of the specific chemical reactions or identification of macromolecules.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Constructing Explanations and Designing	LS1.C: Organization for Matter and Energy	Energy and Matter
Solutions	Flow in Organisms	Changes of energy and matter in a
Construct and revise an explanation	• The sugar molecules thus formed contain	system can be described in terms of
based on valid and reliable evidence	carbon, hydrogen, and oxygen: their	energy and matter flows into, out of, and
obtained from a variety of sources	hydrocarbon backbones are used to	within that system.
(including students' own investigations,	make amino acids and other carbon-	
models, theories, simulations, peer	based molecules that can be assembled	
review) and the assumption that theories	into larger molecules (such as proteins or	
and laws that describe the natural world	DNA), used for example to form new	
operate today as they did in the past and	cells.	
will continue to do so in the future.	 As matter and energy flow through 	
	different organizational levels of living	
	systems, chemical elements are	
	recombined in different ways to form	
	different products.	

Students who demonstrate understanding can: Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed, resulting in a net transfer of energy.

Clarification Statement: Emphasis is on the conceptual understanding of the inputs and outputs of the process of cellular respiration.

Assessment Boundary: Assessment should not include identification of the steps or specific processes involved in cellular respiration.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and Using Models	LS1.C: Organization for Matter and Energy	Energy and Matter
• Use a model based on evidence to	Flow in Organisms	• Energy cannot be created or destroyed—
illustrate the relationships between	As matter and energy flow through	it only moves between one place and
systems or between components of a	different organizational levels of living	another place, between objects and/or
system.	systems, chemical elements are	fields, or between systems.
	recombined in different ways to form	
	different products.	
	• As a result of these chemical reactions,	
	energy is transferred from one system of	
	interacting molecules to another. Cellular	
	respiration is a chemical process in which	
	the bonds of food molecules and oxygen	
	molecules are broken and new	
	compounds are formed that can	
	transport energy to muscles. Cellular	
	respiration also releases the energy	
	needed to maintain body temperature	
	despite ongoing energy transfer to the	
	surrounding environment.	

Students who demonstrate understanding can: Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions.

Clarification Statement: Emphasis is on conceptual understanding of the role of aerobic and anaerobic respiration in different environments.

Assessment Boundary: Assessment does not include the specific chemical processes of either aerobic or anaerobic respiration.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Constructing Explanations and Designing	LS2.B: Cycles of Matter and Energy Transfer	Energy and Matter
Solutions	in Ecosystems	• Energy drives the cycling of matter within
 Construct and revise an explanation 	 Photosynthesis and cellular respiration 	and between systems.
based on valid and reliable evidence	(including anaerobic processes) provide	
obtained from a variety of sources	most of the energy for life processes.	
(including students' own investigations,		
models, theories, simulations, peer		
review) and the assumption that theories		
and laws that describe the natural world		
operate today as they did in the past and		
will continue to do so in the future.		
Connections to Nature of Science		
Scientific Knowledge is Open to Revision in		
Light of New Evidence		
 Most scientific knowledge is quite 		
durable, but is, in principle, subject to		
change based on new evidence and/or		
reinterpretation of existing evidence.		

Students who demonstrate understanding can: Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.

Clarification Statement: Emphasis is on using a mathematical model of stored energy in biomass to describe the transfer of energy from one trophic level to another and that matter and energy are conserved as matter cycles and energy flows through ecosystems. Emphasis is on atoms and molecules such as carbon, oxygen, hydrogen and nitrogen being conserved as they move through an ecosystem.

Assessment Boundary: Assessment is limited to proportional reasoning to describe the cycling of matter and flow of energy.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Using Mathematics and Computational	LS2.B: Cycles of Matter and Energy Transfer	Energy and Matter
Thinking	in Ecosystems	• Energy cannot be created or destroyed—
Use mathematical representations of	Plants or algae form the lowest level of	it only moves between one place and
phenomena or design solutions to	the food web. At each link upward in a	another place, between objects and/or
support claims.	food web, only a small fraction of the	fields, or between systems.
	matter consumed at the lower level is	
	transferred upward, to produce growth	
	and release energy in cellular respiration	
	at the higher level. Given this inefficiency,	
	there are generally fewer organisms at	
	higher levels of a food web. Some matter	
	reacts to release energy for life functions,	
	some matter is stored in newly made	
	structures, and much is discarded. The	
	chemical elements that make up the	
	molecules of organisms pass through	
	food webs and into and out of the	
	atmosphere and soil, and they are	
	combined and recombined in different	
	ways. At each link in an ecosystem,	
	matter and energy are conserved.	

Students who demonstrate understanding can: Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.

Clarification Statement: Examples of models could include simulations and mathematical models.

Assessment Boundary: Assessment does not include the specific chemical steps of photosynthesis and respiration.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and Using Models	LS2.B: Cycles of Matter and Energy Transfer	Systems and System Models
 Develop a model based on evidence to illustrate the relationships between systems or components of a system. 	 in Ecosystems Photosynthesis and cellular respiration are important components of the carbon cycle, in which carbon is exchanged among the biosphere, atmosphere, oceans, and geosphere through chemical, physical, geological, and biological processes. 	 Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions— including energy, matter, and information flows—within and between systems at different scales.
	 PS3.D: Energy in Chemical Processes The main way that solar energy is captured and stored on Earth is through the complex chemical process known as photosynthesis. (<i>Secondary</i>) 	

HS. Interdependent Relationships in Ecosystems

Students who demonstrate understanding can:

HS-LS2-1.

Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales. [Clarification Statement: Emphasis is on quantitative analysis and comparison of the relationships among interdependent factors including boundaries, resources, climate, and competition. Examples of mathematical comparisons could include graphs, charts, histograms, and population changes gathered from simulations or historical data sets.] [Assessment Boundary: Assessment does not include deriving mathematical equations to make comparisons.]

HS-LS2-2.

Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales. [Clarification Statement: Examples of mathematical representations include finding the average, determining trends, and using graphical comparisons of multiple sets of data.] [Assessment Boundary: Assessment is limited to provided data.]

HS-LS2-6.

Evaluate claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem. [Clarification Statement: Examples of changes in ecosystem conditions could include hunting and fishing harvests, predation, flooding, sea ice variation, erosion, volcanic eruptions, land level changes due to earthquakes, tsunamis, changes in ocean current patterns or ocean chemistry, or sea-level rise.]

HS-LS2-7.

Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.* [Clarification Statement: Examples of human activities can include urbanization, pollution, building dams and roads, and dissemination of invasive species. Example lessons can include applications of Tragedy of the Commons.]

HS-LS2-8.

Evaluate evidence for the role of group behavior on individual and species' chances to survive and reproduce. [Clarification Statement: Emphasis is on: (1) distinguishing between group and individual behavior, (2) identifying evidence supporting the outcomes of group

behavior, and (3) developing logical and reasonable arguments based on evidence. Examples of group behaviors could include flocking, schooling, herding, and cooperative behaviors such as hunting, migrating, and swarming.]

HS-LS4-6.

Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.* [Clarification Statement: Emphasis is on testing solutions for a proposed problem related to threatened or endangered species, or to genetic variation of organisms for multiple species.]

Students who demonstrate understanding can: Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales.

Clarification Statement: Emphasis is on quantitative analysis and comparison of the relationships among interdependent factors including boundaries, resources, climate, and competition. Examples of mathematical comparisons could include graphs, charts, histograms, and population changes gathered from simulations or historical data sets.

Assessment Boundary: Assessment does not include deriving mathematical equations to make comparisons.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Using Mathematics and Computational	LS2.A: Interdependent Relationships in	Scale, Proportion, and Quantity
Thinking	Ecosystems	• The significance of a phenomenon is
Use mathematical and/or computational	• Ecosystems have carrying capacities,	dependent on the scale, proportion, and
representations of phenomena or design	which are limits to the numbers of	quantity at which it occurs.
solutions to support explanations.	organisms and populations they can	
	support. These limits result from such	
	factors as the availability of living and	
	nonliving resources and from such	
	challenges such as predation,	
	competition, and disease. Organisms	
	would have the capacity to produce	
	populations of great size were it not for	
	the fact that environments and resources	
	are finite. This fundamental tension	
	affects the abundance (number of	
	individuals) of species in any given	
	ecosystem.	

Students who demonstrate understanding can: Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.

Clarification Statement: Examples of mathematical representations include finding the average, determining trends, and using graphical comparisons of multiple sets of data.

Assessment Boundary: Assessment is limited to provided data.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Using Mathematics and Computational	LS2.A: Interdependent Relationships in	Scale, Proportion, and Quantity
Thinking	Ecosystems	• Using the concept of orders of magnitude
Use mathematical representations of	Ecosystems have carrying capacities,	allows one to understand how a model at
phenomena or design solutions to	which are limits to the numbers of	one scale relates to a model at another
support and revise explanations.	organisms and populations they can	scale.
	support. These limits result from such	
Connections to Nature of Science	factors as the availability of living and	
	nonliving resources and from such	
Scientific Knowledge is Open to Revision in	challenges such as predation,	
Light of New Evidence	competition, and disease. Organisms	
Most scientific knowledge is quite	would have the capacity to produce	
durable, but is, in principle, subject to	populations of great size were it not for	
change based on new evidence and/or	the fact that environments and resources	
reinterpretation of existing evidence.	are finite. This fundamental tension	
	affects the abundance (number of	
	individuals) of species in any given	
	ecosystem.	
	LS2.C: Ecosystem Dynamics, Functioning,	
	and Resilience	
	A complex set of interactions within an	
	ecosystem can keep its numbers and	
	types of organisms relatively constant ≫	

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
	over long periods of time under stable	
	conditions. If a modest biological or	
	physical disturbance to an ecosystem	
	occurs, it may return to its more or less	
	original status (i.e., the ecosystem is	
	resilient), as opposed to becoming a very	
	different ecosystem. Extreme	
	fluctuations in conditions or the size of	
	any population, however, can challenge	
	the functioning of ecosystems in terms of	
	resources and habitat availability.	

Students who demonstrate understanding can: Evaluate claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem.

Clarification Statement: Examples of changes in ecosystem conditions could include hunting and fishing harvests, predation, flooding, sea ice variation, erosion, volcanic eruptions, land level changes due to earthquakes, tsunamis, changes in ocean current patterns or ocean chemistry, or sea-level rise.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Engaging in Argument from Evidence	LS2.C: Ecosystem Dynamics, Functioning,	Stability and Change
• Evaluate the claims, evidence, and	and Resilience	• Much of science deals with constructing
reasoning behind currently accepted	• A complex set of interactions within an	explanations of how things change and
explanations or solutions to determine	ecosystem can keep its numbers and	how they remain stable.
the merits of arguments.	types of organisms relatively constant	
	over long periods of time under stable	
Connections to Nature of Science	conditions. If a modest biological or	
	physical disturbance to an ecosystem	
Scientific Knowledge is Open to Revision in	occurs, it may return to its more or less	
Light of New Evidence	original status (i.e., the ecosystem is	
Scientific argumentation is a mode of	resilient), as opposed to becoming a very	
logical discourse used to clarify the	different ecosystem. Extreme	
strength of relationships between ideas	fluctuations in conditions or the size of	
and evidence that may result in revision	any population, however, can challenge	
of an explanation.	the functioning of ecosystems in terms of	
	resources and habitat availability.	

Students who demonstrate understanding can: Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.*

Clarification Statement: Examples of human activities can include urbanization, pollution, building dams and roads, and dissemination of invasive species. Example lessons can include applications of Tragedy of the Commons.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Constructing Explanations and Designing	LS2.C: Ecosystem Dynamics, Functioning,	Stability and Change
Solutions	and Resilience	Much of science deals with constructing
• Design, evaluate, and refine a solution to	Moreover, anthropogenic changes	explanations of how things change and
a complex real-world problem, based on	(induced by human activity) in the	how they remain stable.
scientific knowledge, student-generated	environment—including habitat	
sources of evidence, prioritized criteria,	destruction, pollution, introduction of	
and tradeon considerations.	climate change can discust an	
	climate change—can disrupt an	
	some species	
	some species.	
	LS4.D: Biodiversity and Humans	
	• Biodiversity is increased by the formation	
	of new species (speciation) and	
	decreased by the loss of species	
	(extinction). (Secondary)	
	Humans depend on the living world for	
	the resources and other benefits	
	provided by biodiversity. But human	
	activity is also having adverse impacts on	
	biodiversity through overpopulation,	
	overexploitation, habitat destruction,	
	poliution, introduction of invasive	
	species, and climate change. Thus	
	sustaining biodiversity so that V	

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
	ecosystem functioning and productivity are maintained is essential to supporting and enhancing life on Earth. Sustaining biodiversity also aids humanity by preserving landscapes of recreational or inspirational value. (Secondary)	
	 ETS1.B: Developing Possible Solutions When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (Secondary) 	

Students who demonstrate understanding can: Evaluate evidence for the role of group behavior on individual and species' chances to survive and reproduce.

Clarification Statement: Emphasis is on: (1) distinguishing between group and individual behavior, (2) identifying evidence supporting the outcomes of group behavior, and (3) developing logical and reasonable arguments based on evidence. Examples of group behaviors could include flocking, schooling, herding, and cooperative behaviors such as hunting, migrating, and swarming.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Engaging in Argument from Evidence	LS2.D: Social Interactions and Group	Cause and Effect
• Evaluate the evidence behind currently	Behavior	Empirical evidence is required to
accepted explanations or solutions to	Group behavior has evolved because	differentiate between cause and
determine the merits of arguments.	membership can increase the chances of	correlation and make claims about
	survival for individuals and their genetic	specific causes and effects.
Connections to Nature of Science	relatives.	
Scientific Knowledge is Open to Revision in		
Light of New Evidence		
Scientific argumentation is a mode of		
logical discourse used to clarify the		
strength of relationships between ideas		
and evidence that may result in revision		
of an explanation.		

Students who demonstrate understanding can: Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.*

Clarification Statement: Emphasis is on testing solutions for a proposed problem related to threatened or endangered species, or to genetic variation of organisms for multiple species.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Using Mathematics and Computational	LS4.C: Adaptation	Cause and Effect
Thinking	Changes in the physical environment,	Empirical evidence is required to
Create or revise a simulation of a	whether naturally occurring or human	differentiate between cause and
phenomenon, designed device, process,	induced, have thus contributed to the	correlation and make claims about
or system.	expansion of some species, the	specific causes and effects.
	emergence of new distinct species as	
	populations diverge under different	
	conditions, and the decline-and	
	sometimes the extinction-of some	
	species.	
	LS4.D: Biodiversity and Humans	
	Humans depend on the living world for	
	the resources and other benefits	
	provided by biodiversity. But human	
	activity is also having adverse impacts on	
	biodiversity through overpopulation,	
	overexploitation, habitat destruction,	
	pollution, introduction of invasive	
	species, and climate change. Thus	
	sustaining biodiversity so that ecosystem	
	functioning and productivity are	
	maintained is essential to supporting and	
	enhancing life on Earth. Sustaining	
	biodiversity also aids humanity by igtarrow	

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
	preserving landscapes of recreational or inspirational value.	
	ETS1.B: Developing Possible Solutions	
	• When evaluating solutions, it is important	
	to take into account a range of	
	constraints, including cost, safety,	
	reliability, and aesthetics, and to consider	
	impacts	
	 Both physical models and computers can 	
	be used in various ways to aid in the	
	engineering design process. Computers	
	are useful for a variety of purposes, such	
	as running simulations to test different	
	ways of solving a problem or to see which	
	one is most efficient or economical; and	
	In making a persuasive presentation to a	
	his or her needs	
	his of her heeds.	

HS. Inheritance and Variation of Traits

Students who demonstrate understanding can:

HS-LS1-4.

Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms. [Assessment Boundary: Assessment does not include specific gene control mechanisms or rote memorization of the steps of mitosis.]

HS-LS3-1.

Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring. [Assessment Boundary: Assessment does not include the phases of meiosis or the biochemical mechanism of specific steps in the process.]

HS-LS3-2.

Make and defend a claim based on evidence that inheritable genetic variations may result from (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors. [Clarification Statement: Emphasis is on using data to support arguments for the way variation occurs.] [Assessment Boundary: Assessment does not include the phases of meiosis or the biochemical mechanism of specific steps in the process.]

HS-LS3-3.

Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population. [Clarification Statement: Emphasis is on the use of mathematics to describe the probability of traits as it relates to genetic and environmental factors in the expression of traits.] [Assessment Boundary: Assessment does not include Hardy-Weinberg calculations.]

Students who demonstrate understanding can: Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms.

Assessment Boundary: Assessment does not include specific gene control mechanisms or rote memorization of the steps of mitosis.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and Using Models	LS1.B: Growth and Development of	Systems and System Models
 Use a model based on evidence to illustrate the relationships between systems or between components of a system. 	 Organisms In multicellular organisms individual cells grow and then divide via a process called mitosis, thereby allowing the organism to grow. The organism begins as a single cell (fertilized egg) that divides successively to produce many cells, with each parent cell passing identical genetic material (two variants of each chromosome pair) to both daughter cells. Cellular division and differentiation produce and maintain a complex organism, composed of systems of tissues and organs that work together to meet the needs of the whole organism. 	 Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions— including energy, matter, and information flows—within and between systems at different scales.

HS-LS3-1

Students who demonstrate understanding can: Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring.

Assessment Boundary: Assessment does not include the phases of meiosis or the biochemical mechanism of specific steps in the process.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking Questions and Defining Problems	LS1.A: Structure and Function	Cause and Effect
• Ask questions that arise from examining	All cells contain genetic information in	Empirical evidence is required to
models or a theory to clarify	the form of DNA molecules. Genes are	differentiate between cause and
relationships.	regions in the DNA that contain the	correlation and make claims about
	instructions that code for the formation	specific causes and effects.
	of proteins. (Secondary)	
	LS3.A: Inheritance of Traits	
	Each chromosome consists of a single	
	very long DNA molecule, and each gene	
	on the chromosome is a particular	
	segment of that DNA. The instructions for	
	forming species' characteristics are	
	carried in DNA. All cells in an organism	
	have the same genetic content, but the	
	genes used (expressed) by the cell may	
	be regulated in different ways. Not all	
	DNA codes for a protein; some segments	
	of DNA are involved in regulatory or	
	structural functions, and some have no	
	as-yet known function.	

HS-LS3-2

Students who demonstrate understanding can: Make and defend a claim based on evidence that inheritable genetic variations may result from (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors.

Clarification Statement: Emphasis is on using data to support arguments for the way variation occurs.

Assessment Boundary: Assessment does not include the phases of meiosis or the biochemical mechanism of specific steps in the process.

HS-LS3-3

Students who demonstrate understanding can: Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population.

Clarification Statement: Emphasis is on the use of mathematics to describe the probability of traits as it relates to genetic and environmental factors in the expression of traits.

Assessment Boundary: Assessment does not include Hardy-Weinberg calculations.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Analyzing and Interpreting Data	LS3.B: Variation of Traits	Scale, Proportion, and Quantity
 Apply concepts of statistics and 	Environmental factors also affect	Algebraic thinking is used to examine
probability (including determining	expression of traits, and hence affect the	scientific data and predict the effect of a
function fits to data, slope, intercept, and	probability of occurrences of traits in a	change in one variable on another (e.g.,
correlation coefficient for linear fits) to	population. Thus the variation and	linear growth vs. exponential growth).
scientific and engineering questions and	distribution of traits observed depends	
problems, using digital tools when	on both genetic and environmental	Connections to Nature of Science
feasible.	factors.	
		Science is a Human Endeavor
		Technological advances have influenced
		the progress of science and science has
		influenced advances in technology.
		Science and engineering are influenced
		by society and society is influenced by
		science and engineering.

HS. Natural Selection and Evolution

Students who demonstrate understanding can:

HS-LS4-1.

Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence. [Clarification Statement: Emphasis is on a conceptual understanding of the role each line of evidence has relating to common ancestry and biological evolution. Examples of evidence could include similarities in DNA sequences, anatomical structures, and order of appearance of structures in embryological development.]

HS-LS4-2.

Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment. [Clarification Statement: Emphasis is on using evidence to explain the influence each of the four factors has on number of organisms, behaviors, morphology, or physiology in terms of ability to compete for limited resources and subsequent survival of individuals and adaptation of species. Examples of evidence could include mathematical models such as simple distribution graphs and proportional reasoning.] [Assessment Boundary: Assessment does not include other mechanisms of evolution, such as genetic drift, gene flow through migration, and co-evolution.]

HS-LS4-3.

Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait. [Clarification Statement: Emphasis is on analyzing shifts in numerical distribution of traits and using these shifts as evidence to support explanations.] [Assessment Boundary: Assessment is limited to basic statistical and graphical analysis. Assessment does not include allele frequency calculations.]

HS-LS4-4.

Construct an explanation based on evidence for how natural selection leads to adaptation of populations. [Clarification Statement: Emphasis is on using data to provide evidence for how specific biotic and abiotic differences in ecosystems (such as ranges of seasonal temperature, long-term climate change, acidity, light, geographic barriers, or evolution of other organisms) contribute to a change in gene frequency over time, leading to adaptation of populations.]

HS-LS4-5.

Evaluate the evidence supporting claims that changes in environmental conditions may result in (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species. [Clarification Statement: Emphasis is on determining cause and effect relationships for how changes to the environment such as deforestation, fishing, pollution, erosion, permafrost thawing, changes in sea ice, invasive species, land level changes due to earthquakes, changes in ocean chemistry, sea level change, volcanic eruptions, drought, flood and the rate of change of the environment affect the distribution or disappearance of traits in species.

Students who demonstrate understanding can: Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence.

Clarification Statement: Emphasis is on a conceptual understanding of the role each line of evidence has relating to common ancestry and biological evolution. Examples of evidence could include similarities in DNA sequences, anatomical structures, and order of appearance of structures in embryological development.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Obtaining, Evaluating, and Communicating	LS4.A: Evidence of Common Ancestry and	Patterns
Information	Diversity	 Different patterns may be observed at
• Communicate scientific information (e.g.,	 Genetic information, like the fossil 	each of the scales at which a system is
about phenomena and/or the process of	record, provides evidence of evolution.	studied and can provide evidence for
development and the design and	DNA sequences vary among species, but	causality in explanations of phenomena.
performance of a proposed process or	there are many overlaps; in fact, the	
system) in multiple formats (including	ongoing branching that produces	Connections to Nature of Science
orally, graphically, textually, and	multiple lines of descent can be inferred	
mathematically).	by comparing the DNA sequences of	Scientific Knowledge Assumes an Order and
	different organisms. Such information is	Consistency in Natural Systems
Connections to Nature of Science	also derivable from the similarities and	 Scientific knowledge is based on the
	differences in amino acid sequences and	assumption that natural laws operate
Science Models, Laws, Mechanisms, and	from anatomical and embryological	today as they did in the past and they will
Theories Explain Natural Phenomena	evidence.	continue to do so in the future.
A scientific theory is a substantiated		
explanation of some aspect of the natural		
world, based on a body of facts that have		
been repeatedly confirmed through		
observation and experiment and the		
science community validates each theory		
before it is accepted. If new evidence is		
discovered that the theory does not		
accommodate, the theory is generally		
modified in light of this new evidence.		

Students who demonstrate understanding can: Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment.

Clarification Statement: Emphasis is on using evidence to explain the influence each of the four factors has on number of organisms, behaviors, morphology, or physiology in terms of ability to compete for limited resources and subsequent survival of individuals and adaptation of species. Examples of evidence could include mathematical models such as simple distribution graphs and proportional reasoning.

Assessment Boundary: Assessment does not include other mechanisms of evolution, such as genetic drift, gene flow through migration, and coevolution.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Constructing Explanations and Designing	LS4.B: Natural Selection	Cause and Effect
Solutions	Natural selection occurs only if there is	Empirical evidence is required to
Construct an explanation based on valid	both (1) variation in the genetic	differentiate between cause and
and reliable evidence obtained from a	information between organisms in a	correlation and make claims about
variety of sources (including students'	population and (2) variation in the	specific causes and effects.
own investigations, models, theories,	expression of that genetic information—	
simulations, peer review) and the	that is, trait variation—that leads to	
assumption that theories and laws that	differences in performance among	
describe the natural world operate today	individuals.	
as they did in the past and will continue		
to do so in the future.	LS4.C: Adaptation	
	Evolution is a consequence of the	
	interaction of four factors: (1) the	
	potential for a species to increase in	
	number, (2) the genetic variation of	
	individuals in a species due to mutation	
	and sexual reproduction, (3) competition	
	for an environment's limited supply of	
	the resources that individuals need in $ ative$	

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
	order to survive and reproduce, and (4) the ensuing proliferation of those organisms that are better able to survive and reproduce in that environment.	

Students who demonstrate understanding can: Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait.

Clarification Statement: Emphasis is on analyzing shifts in numerical distribution of traits and using these shifts as evidence to support explanations.

Assessment Boundary: Assessment is limited to basic statistical and graphical analysis. Assessment does not include allele frequency calculations.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Analyzing and Interpreting Data	LS4.B: Natural Selection	Patterns
 Apply concepts of statistics and 	Natural selection occurs only if there is	Different patterns may be observed at
probability (including determining	both (1) variation in the genetic	each of the scales at which a system is
function fits to data, slope, intercept, and	information between organisms in a	studied and can provide evidence for
correlation coefficient for linear fits) to	population and (2) variation in the	causality in explanations of phenomena.
scientific and engineering questions and	expression of that genetic information—	
problems, using digital tools when	that is, trait variation—that leads to	
feasible.	differences in performance among	
	individuals.	
	The traits that positively affect survival	
	are more likely to be reproduced, and	
	thus are more common in the	
	population.	
	LS4.C: Adaptation	
	Natural selection leads to adaptation,	
	that is, to a population dominated by	
	organisms that are anatomically,	
	behaviorally, and physiologically well	
	suited to survive and reproduce in a	
	specific environment. That is, the	
	differential survival and reproduction ≫	

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
	 of organisms in a population that have an advantageous heritable trait leads to an increase in the proportion of individuals in future generations that have the trait and to a decrease in the proportion of individuals that do not. Adaptation also means that the distribution of traits in a population can change when conditions change. 	

Students who demonstrate understanding can: Construct an explanation based on evidence for how natural selection leads to adaptation of populations.

Clarification Statement: Emphasis is on using data to provide evidence for how specific biotic and abiotic differences in ecosystems (such as ranges of seasonal temperature, long-term climate change, acidity, light, geographic barriers, or evolution of other organisms) contribute to a change in gene frequency over time, leading to adaptation of populations.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Constructing Explanations and Designing	LS4.C: Adaptation	Cause and Effect
Solutions	• Natural selection leads to adaptation,	Empirical evidence is required to
Construct an explanation based on valid	that is, to a population dominated by	differentiate between cause and
and reliable evidence obtained from a	organisms that are anatomically,	correlation and make claims about
variety of sources (including students'	behaviorally, and physiologically well	specific causes and effects.
own investigations, models, theories,	suited to survive and reproduce in a	
simulations, peer review) and the	specific environment. That is, the	Connections to Nature of Science
assumption that theories and laws that	differential survival and reproduction of	
describe the natural world operate today	organisms in a population that have an	Scientific Knowledge Assumes an Order and
as they did in the past and will continue	advantageous heritable trait leads to an	Consistency in Natural Systems
to do so in the future.	increase in the proportion of individuals	Scientific knowledge is based on the
	in future generations that have the trait	assumption that natural laws operate
	and to a decrease in the proportion of	today as they did in the past and they will
	individuals that do not.	continue to do so in the future.

Students who demonstrate understanding can: Evaluate the evidence supporting claims that changes in environmental conditions may result in (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species.

Clarification Statement: Emphasis is on determining cause and effect relationships for how changes to the environment such as deforestation, fishing, pollution, erosion, permafrost thawing, changes in sea ice, invasive species, land level changes due to earthquakes, changes in ocean chemistry, sea level change, volcanic eruptions, drought, flood and the rate of change of the environment affect the distribution or disappearance of traits in species.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Engaging in Argument from Evidence	LS4.C: Adaptation	Cause and Effect
 Engaging in Argument from Evidence Evaluate the evidence behind currently accepted explanations or solutions to determine the merits of arguments. 	 LS4.C: Adaptation Changes in the physical environment, whether naturally occurring or human induced, have thus contributed to the expansion of some species, the emergence of new distinct species as populations diverge under different conditions, and the decline–and sometimes the extinction–of some species. Species become extinct because they can no longer survive and reproduce in their altered environment. If members cannot adjust to change that is too fast or drastic, the opportunity for the species' evolution is lost. 	 Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
	drastic, the opportunity for the species' evolution is lost.	